2015 Soal IPA 2008 - 2014; SIMAK UI. Matematika Dasar dan IPA; UN Soal dan Pembahasan SBMPTN 2017 Matematika Dasar Kode 265 Soal SBMPTN Matematika Dasar 2011-2018 Berdasarkan soal SBMPTN dari tahun 2011-2018, tutor Zenius udah sempat merangkum materi yang paling sering keluar. Nah, berikut ini adalah link latihan soal
Soal dan Pembahasan No 1-5 Matematika IPA SIMAK UI 2010 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 1 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 2 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 3 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 4 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 5 Soal dan Pembahasan No 6-10 Matematika IPA SIMAK UI 2010 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 6Khusus Nomor 6, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban D Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 7Khusus Nomor 7, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban A Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 8Khusus Nomor 8, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban D Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 9Khusus Nomor 9, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban A Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 10Khusus Nomor 10, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban B Soal dan Pembahasan No 11-12 Matematika IPA SIMAK UI 2010 Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 11Khusus Nomor 11, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban D Pembahasan Soal Matematika IPA 2010 Simak UI Nomor 12Khusus Nomor 12, kami memberi kesempatan kepada teman teman untuk mencoba menemukan cara menyelesaikan soal ini. Review Soal yang mirip dan hubungkan dengan rumus yang bersesuaian. Selamat berlatih !!!Kunci Jawaban A
Sesuaijudul di atas, maka pada kesempatan ini foldersoal akan memberikan contoh susunan acara rapat pengembangan kurikulum 2013. Bagi Anda yang berminat dengan contoh susunan acara yang akan kami bagikan, silahkan untuk mendownload contoh tersebut dalam bentuk file berformat doc seperti yang kami sediakan di bawah.
Hallow sobat, bagaimana kabarnya hari ini? Semoga baik-baik saja. Pada kali ini saya akan sharing pembmahasan soal SIMAK UI Matematika IPA KA1 tahun 2014. Bagaimana menurut teman-teman soal matematika IPA KA1 tahun 2014 ini, menantangkan ? Yah, itu benar, sangat menantang. Sampai-sampai sulit untuk dikerjakan. Untuk soal nomor 1 sampai nomor 5, ada satu soal yang belum ketemu jawabannya yaitu nomor 1, padahal soalnya menurut saya relatif mudah yaitu penerapan Persamaan kuadrat baru. Mohon teman-teman Cek ya, mungkin ada salah dalah perhitungan atau konsepnya. Sementara untuk nomor 3, kelihatannya sulit karena menggunakan konsep logaritma dan bentuk mutlak. dan harus teliti karena melibatkan syarat logaritma. Soal nomor 2 matematika ipa KA1, menurut saya juga menantang, karena melibatkan fungsi, polinomial , dan analisis aljabar. pokoknya keren menurut saya. Semoga penjelasan kami bisa dimengerti dengan baik dan kalau ada alternatif penyelesaian, mohon di share ya, terima kasih. Nah untuk soal nomor 4, sebenarnya lebih mudah karena menggunakan konsep barisan dan deret aritmatika, hanya saja harus melibatkan turunan untuk menentukan nilai maksimumnya. Dan yang terakhir pada pmbahasan nomor 5, kami langsung memilih nilai vektor $ \vec{a} $ dari opsinya dan mengalikan dengan vektor $ \vec{d} $ yang hasilnya harus nol. Untuk pembahasan lengkap soal simak ui matematika IPA KA1 tahun 2014, langsung saja bisa dilihat berikut ini untuk nomor 1 sampai nomor 5. selamat belajar. $\clubsuit \, $ Operasi akar-akar $2x^2+x-2=0 \rightarrow a= 2 , \, b=1, \, c=-2 \, \, $ dengan akar-akar $ m $ dan $ n $ $m+n = \frac{-b}{a} = \frac{-1}{2} , \, \, mn = \frac{c}{a} = \frac{-2}{2} = - 1 $ * $m^2+n^2 = m+n^2 - 2mn = -\frac{1}{2}^2 - 2. -1 = \frac{9}{4} $ * $ m^3 + n^3 = m^2+n^2m+n - mnm+n $ $ = \frac{9}{4}.\frac{-1}{2} - -1. \frac{-1}{2} = -\frac{13}{8} $ * $ m^5 + n^5 = m^3+n^3.m^2+n^2-mn^2m+n $ $ = \frac{-13}{8}.\frac{9}{4} - -1^2.\frac{-1}{2} = -\frac{101}{32} $ $\clubsuit \, $ Menentukan persamaan kuadrat dengan akar-akar $ m^3-n^2 $ dan $ n^3-m^2 $ Rumus dasar $ x^2 - HJx + HK = 0 $ $\begin{align} HJ & = m^3-n^2 + n^3-m^2 \\ & = m^3+n^3 - m^2+n^2 \\ & = -\frac{13}{8} - \frac{9}{4} \\ & = - \frac{31}{8} \end{align}$ $\begin{align} HK & = m^3-n^2.n^3-m^2 \\ & = mn^3 + mn^2 - m^5+n^5 \\ & = -1^3 + -1^2 - -\frac{101}{32} \\ & = \frac{101}{32} \end{align}$ Sehingga PK nya adalah $ x^2 - HJx + HK = 0 \rightarrow x^2 - - \frac{31}{8}x + \frac{101}{32} = 0 $ $ \rightarrow 32x^2 + 124x + 101 = 0 $ Jadi, PK nya adalah $ 32x^2 + 124x + 101 = 0 . \heartsuit $ Nomor 2 Diketahui $px$ dan $gx$ adalah dua suku banyak yang berbeda, dengan $p10=m$ dan $g10=n$. Jika $pxhx=\left \frac{px}{gx}-1 \right \left px + gx \right , \, h10=-\frac{16}{15}$, maka nilai maksimum dari $m+n=...$ $\spadesuit \, $ Substitusi $ x = 10 $ $\begin{align} pxhx & =\left \frac{px}{gx}-1 \right \left px + gx \right \\ p10h10 & = \left \frac{p10}{g10}-1 \right \left p10 + g10 \right \\ m . \left -\frac{16}{15} \right & = \left \frac{m}{n}-1 \right \left m + n \right \\ m . \left -\frac{16}{15} \right & = \left \frac{m-n}{n} \right \left m + n \right \\ m . \left -\frac{16}{15} \right & = \left \frac{m-nm+n}{n} \right \\ -\frac{16}{15} & = \left \frac{m-nm+n}{ \right \\ \frac{16}{15} & = \left \frac{n-mn+m}{ \right \\ \frac{2 \times 8}{5 \times 3 } & = \left \frac{n-mn+m}{ \right \end{align}$ Diperoleh $ n = 5 , \, $ dan $ \, m = 3 $ atau $ n = -5 , \, $ dan $ \, m = -3 $ Sehingga nilai $ m + n = 3 + 5 = 8 $ atau $ m + n = -3 + -5 = -8 = 8 $ Jadi, nilai maksimum $ m + n = 8. \heartsuit $ Nomor 3 Himpunan penyelesaian pertidaksamaan $ \log x+1 \geq \log 3 + \log 2x-1$ adalah ... $\clubsuit \, $ Syarat logaritma ${}^a \log b = c \, $ syaratnya $ b > 0 $ $ \log x+1 \geq \log 3 + \log 2x-1 $ Syarat logaritmanya $ x+1 > 0 \rightarrow x \neq -1 $ $ 2x-1 > 0 \rightarrow x \neq \frac{1}{2} $ $\clubsuit \, $ Konsep dasar pertidaksamaan ${}^a \log fx \geq {}^a \log gx \rightarrow fx \geq gx \, $ dengan $ a > 1 $ $ fx \geq gx \rightarrow [fx+gx][fx-gx] \geq 0 $ $\clubsuit \, $ Menyelesaikan soalnya $\begin{align} \log x+1 & \geq \log 3 + \log 2x-1 \\ \log x+1 & \geq \log 32x-1 \\ \log x+1 & \geq \log 6x-3 \\ x+1 & \geq 6x-3 \\ [x+1+6x-3]&[x+1-6x-3] \geq 0 \\ 7x-2-5x+4 & \geq 0 \\ x = \frac{2}{7} & \vee x = \frac{4}{5} \end{align}$ Jadi, solusinya adalah $ HP = \{ \frac{2}{7} \leq x \leq \frac{4}{5} , \, x \neq \frac{1}{2} \, \} . \heartsuit $ Nomor 4 Diketahui suatu barisan aritmatika $\{a_n\}$ memiliki suku awal $a>0$ dan $2a_{10}=5a_{15}$. Nilai $n$ yang memenuhi agar jumlah $n$ suku pertama dari barisan tersebut maksimum adalah ... $\spadesuit \, $ Barisan aritmatika $ U_n = a + n-1b \, $ dan $ S_n = \frac{n}{2}2a+n-1b $ $\{a_n\} \, $ barisan aritmatika, sehingga $ a_n = a + n-1b \, $ dengan $ a > 0 $ $\spadesuit \, $ Menyederhanakan yang diketahui $\begin{align} 2a_{10} & =5a_{15} \\ 2a + 9b & =5a+14b \\ -3a & = 52b \\ a & = -\frac{52b}{3} \, \, \text{dengan} \, b < 0 \end{align}$ $\spadesuit \, $ Menentukan $ S_n $ dengan $ a = -\frac{52b}{3} $ $\begin{align} S_n & = \frac{n}{2}2a+n-1b \\ & = \frac{n}{2}2.-\frac{52b}{3} +n-1b \\ & = \frac{n}{2} -\frac{104b}{3} + nb - b \\ & = \frac{n}{2} -\frac{107b}{3} + nb \\ S_n & = \frac{b}{2}n^2 - \frac{107b}{6} n \\ S_n^\prime & = bn - \frac{107b}{6} \, \, \text{turunannya} \end{align}$ $\spadesuit \, $ Untuk menentukan $ S_n $ maksimum, maka turunan = 0 $\begin{align} S_n^\prime & = 0 \\ bn - \frac{107b}{6} & = 0 \\ n & = \frac{107}{6} = 17, 8333 \end{align}$ Karena $ n $ bulat, maka $ n $ yang menyebabkan maksimum adalah nilai $ n $ yang terdekat dengan 17,8333 selisih terkecil yaitu untuk $ n = 18 $ . Jadi, nilai $ n = 18 . \heartsuit $ Nomor 5 Misalkan diberikan vektor $\vec{b}=y,-2z,3x$, dan $\vec{c}=2z,3x,-y$. Diketahui vektor $\vec{a}$ membentuk sudut tumpul dengan sumbu $y$ dan $ \vec{a} = 2\sqrt{3}$. Jika $\vec{a}$ membentuk sudut yang sama dengan $\vec{b}$ maupun $\vec{c}$ , dan tegak lurus dengan $\vec{d} = 1,-1,2$ , maka $\vec{a}=...$ $\clubsuit \, $ Vektor $ \vec{a} $ tegak lurus vektor $ \vec{d} $ maka $ \vec{a}.\vec{d} = 0 $ Pilihan yang memenuhi adalah opsi E yaitu $ \vec{a}=2 \, -2 \, -2$, karena $\begin{align} \vec{a}.\vec{d} & = 2 \, -2 \, -2.1 \, -1 \, 2 \\ & = 2+2-4 \\ & = 0 \end{align}$ Jadi, vektor $ \vec{a}=2 \, -2 \, -2 . \heartsuit $ Jika ada masukan, saran, kritikan, alternatif penyelesaian lain yang lebih mudah, atau apapun yang berhubungan dengan halaman ini, silahkan kirim ke email , atau langsung isi komentar pada kotak komentar di bawah ini. Semoga bermanfaat, terima kasih.
MagisterIlmu Matematika dan Ilmu Pengetahuan Alam . Magister Ekonomi & Bisnis . Magister Hukum . Brosur SIMAK UI 2018 (58773) Brosur Pascasarjana 2018 (14560) Kemampuan IPA 2017 (88954) SIMAK 2018 (3) Kemampuan Dasar 2018 (111637)
Berikut ini adalah Soal dan Pembahasan Matematika IPA SIMAK UI 2018 dengan Kode Soal 416. Soal ini merupakan salah satu alat tes untuk menyeleksi mahasiswa/i tahun ajaran 2018/2019 yang akan mengecap pendidikan tinggi di universitas ternama di Indonesia yaitu Universitas Indonesia UI. Universitas Indonesia terletak di Jl. Margonda Raya, Beji, Pondok Cina Kota Depok Jawa Barat. Pembahasan SIMAK UI 2018/2019 ini adalah hasil pemikiran sederhana saya yang tentu masih jauh dari kata sempurna. Saya sangat menghargai kritik dan saran dari pengunjung setia Catatan Matematika yang sifatnya membangun dan mari diskusi dan belajar bersama melalui kolom komentar di akhir postingan ini. Soal SIMAK UI 2018 - Matematika IPA No. 1 Diketahui suku banyak $fx$ dibagi ${{x}^{2}}+x-2$ bersisa $ax+b$ dan dibagi ${{x}^{2}}-4x+3$ bersisa $2bx+a-1$. Jika $f-2=7$, maka ${{a}^{2}}+{{b}^{2}}$ = … A. 12 B. 10 C. 9 D. 8 E. 5Penyelesaian Lihat/Tutup Yang dibagi = Pembagi x Hasil bagi + Sisa Suku banyak $fx$ dibagi $x^2+x-2$ bersisa $ax+b$, maka $fx$ = $x^2+x-2$Hasil + $ax+b$ $fx$ = $x+2x-1$Hasil + $ax+b$ $f-2$ = $-2+2-2-1$Hasil + $-2a+b$ $f-2$ = $-2a+b=7$ … persamaan 1 $f1$ = $1+21-1$Hasil + $a+b$ $f1$ = $a+b$ … persamaan 2 Suku banyak $fx$ dibagi $x^2-4x+3$ bersisa $2bx+a-1$, maka $fx$ = $x^2-4x+3$Hasil + $2bx+a-1$ $fx$ = $x-1x-3$Hasil + $2bx+a-1$ $f1$ = $1-11-3$Hasil + $2b+a-1$ $f1$ = $2b+a-1$ substitusi ke persamaan 2, maka $2b+a-1=a+b$ $b=1$ Substitusi ke persamaan 1, maka $-2a+b=7\Leftrightarrow -2a+1=7\Leftrightarrow a=-3$ ${{a}^{2}}+{{b}^{2}}={{-3}^{2}}+{{1}^{2}}=10$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 2 Himpunan penyelesaian $16-x^2\le x+4$ adalah … A. {$x\in R-4\le x\le 4$} B. {$x\in R-4\le x\le 3$} C. {$x\in Rx\le -4$ atau $x\ge 4$} D. {$x\in R0\le x\le 3$} E. {$x\in Rx\le -4$ atau $x\ge 3$}Penyelesaian Lihat/Tutup i Untuk $x\ge -4$ maka $16-x^2\le x+4$ $16-x^2\le x+4$ $12-x^2-x\le 0$ $x^2+x-12\ge 0$ $x+4x-3\ge 0$ $x\le -4$ atau $x\ge 3$ yang memenuhi syarat $x\ge -4$ adalah $x\ge 3$. ii Untuk $x\le 4$, maka $16-x^2\le x+4$ $16-x^2\le -x+4$ $20-x^2+x\le 0$ $x^2-x-20\ge 0$ $x-5x+4\ge 0$ $x\le -4$ atau $x\ge 5$ yang memenuhi syarat $x\le 4$ adalah $x\le -4$ Dari i dan ii diperoleh {$x\in Rx\le -4$ atau $x\ge 3$} Jawaban E Soal SIMAK UI 2018 - Matematika IPA No. 3 Jika ${{x}_{1}}$ atau ${{x}_{2}}$ memenuhi persamaan $2{{\sin }^{2}}x-\cos x=1$, $0\le x\le \pi $, nilai ${{x}_{1}}+{{x}_{2}}$ adalah … A. $\frac{\pi }{3}$ B. $\frac{2\pi }{3}$ C. $\pi $ D. $\frac{4}{3}\pi $ E. $2\pi $Penyelesaian Lihat/Tutup $2{{\sin }^{2}}x-\cos x=1$ $21-{{\cos }^{2}}x-\cos x=1$ $2{{\cos }^{2}}x+\cos x-1=0$ $2\cos x-1\cos x+1=0$ $\cos x=\frac{1}{2}\Rightarrow {{x}_{1}}={{60}^{o}}$ atau $\cos x=-1\Leftrightarrow {{x}_{2}}={{180}^{o}}$ ${{x}_{1}}+{{x}_{2}}={{60}^{o}}+{{180}^{o}}$ ${{x}_{1}}+{{x}_{2}}={{240}^{o}}=\frac{{{240}^{o}}}{{{180}^{o}}}\pi =\frac{4}{3}\pi $ Jawaban D Soal SIMAK UI 2018 - Matematika IPA No. 4 Jika $\underset{x\to -3}{\mathop{\lim }}\,\frac{\frac{1}{ax}+\frac{1}{3}}{b{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$, nilai $a+b$ untuk $a$ dan $b$ bilangan bulat positif adalah … A. -4 B. -2 C. 0 D. 2 E. 4Penyelesaian Lihat/Tutup $\underset{x\to -3}{\mathop{\lim }}\,\frac{\frac{1}{ax}+\frac{1}{3}}{b{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$ $\underset{x\to -3}{\mathop{\lim }}\,\frac{3+ax}{3axb{{x}^{3}}+27}=-\frac{1}{{{3}^{5}}}$ Untuk $x=-3$ maka $3+ax=0\Leftrightarrow 3-3a=0\Leftrightarrow a=1$ Untuk $x=-3$ maka $b{{x}^{3}}+27=0\Leftrightarrow b.{{-3}^{3}}+27=0\Leftrightarrow b=1$ $a+b=1+1=2$ Jawaban E Soal SIMAK UI 2018 - Matematika IPA No. 5 Jika $fx$ fungsi kontinu di interval $[1,30]$ dan $\int\limits_{6}^{30}{fxdx}=30$, maka $\int\limits_{1}^{9}{f3y+3dy}$ = … A. 5 B. 10 C. 15 D. 18 E. 27Penyelesaian Lihat/Tutup Misal $\int\limits_{y=1}^{y=9}{f3y+3dy}$ $x=3y+3$ maka $\frac{dx}{dy}=3\Leftrightarrow dy=\frac{1}{3}dx$ $y=1\Rightarrow x=6$ $y=9\Rightarrow x=30$ $\int\limits_{1}^{9}{f3y+3dy}=\int\limits_{6}^{30}{fx.\frac{1}{3}dx}$ $=\frac{1}{3}\int\limits_{6}^{30}{fxdx}$ $=\frac{1}{3}.30=10$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 6 Pada balok dengan AB = 6, BC = 3, dan CG = 2, titik M, N, dan O masing-masing terletak pada rusuk EH, FG, dan AD. Jika 3EM = EH, FN = 2NG, 3DO = 2DA, dan $\alpha$ adalah bidang irisan balok yang melalui M, N, dan O, perbandingan luas bidang $\alpha$ dengan luas permukaan balok adalah … A. $\frac{\sqrt{35}}{36}$ B. $\frac{\sqrt{37}}{36}$ C. $\frac{\sqrt{38}}{36}$ D. $\frac{\sqrt{39}}{36}$ E. $\frac{\sqrt{41}}{36}$Penyelesaian Lihat/Tutup Berdasarkan informasi soal, maka dapat dibuat gambar sebagai berikut Bidang $\alpha$ adalah bidang MNN’O berupa persegipanjang Perhatikan segitiga MM’N siku-siku di titik M, dengan MM’ = 6 cm, M’N = 1 cm, maka $MN=\sqrt{{{6}^{2}}+{{1}^{1}}}=\sqrt{37}$ Luas bidang $\alpha$ adalah $=N'N\times MN$ $=2\sqrt{37}$ Luas permukaan balok adalah $=2 $=2 $\frac{\alpha }{ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 7 Diberikan kubus Sebuah titik P terletak pada rusuk CG sehingga CP PG = 5 2. Jika $\alpha $ adalah sudut terbesar antara rusuk CG dan bidang PBD, maka $\sin \alpha $ = … A. $-\frac{7\sqrt{11}}{33}$ B. $-\frac{7\sqrt{11}}{44}$ C. $\frac{7\sqrt{11}}{33}$ D. $\frac{7\sqrt{11}}{44}$ E. $\frac{7\sqrt{11}}{55}$Penyelesaian Lihat/Tutup Karena CP PG = 5 2 untuk mempermudah perhitungan misalkan panjang rusuk kubus 14 cm, maka CP = 10 cm dan PG = 4 cm. Perhatikan gambar berikut ini! Sudut terbesar antara rusuk CG dan bidang PBD adalah $\alpha $, dengan $\alpha ={{180}^{o}}-\angle CPQ$ $CQ=7\sqrt{2}$, CP = 10, maka $PQ=\sqrt{C{{Q}^{2}}+C{{P}^{2}}}$ $PQ=\sqrt{{{7\sqrt{2}}^{2}}+{{10}^{2}}}$ $PQ=3\sqrt{22}$ $\sin \alpha =\sin {{180}^{o}}-\angle CPQ$ $\sin \alpha =\sin \angle CPQ$ $\sin \alpha =\frac{CQ}{PQ}$ $\sin \alpha =\frac{7\sqrt{2}}{3\sqrt{22}}$ $\sin \alpha =\frac{7}{3\sqrt{11}}\times \frac{\sqrt{11}}{\sqrt{11}}=\frac{7\sqrt{11}}{33}$ Jawaban C Soal SIMAK UI 2018 - Matematika IPA No. 8 Jika ${{3}^{x}}+{{5}^{y}}=18$, nilai maksimum ${{3}^{x}}{{.5}^{y}}$ adalah … A. 72 B. 80 C. 81 D. 86 E. 88Penyelesaian Lihat/Tutup ${{3}^{x}}+{{5}^{y}}=18$ Misal ${{3}^{x}}=a$ dan ${{3}^{y}}=b$ , maka $a+b=18\Leftrightarrow a=18-b$ nilai maksimum $ab=...?$ $L= $L=a18-a$ $L=18a-{{a}^{2}}$ Maksimum/minimum, maka $L'=0$ $18-2a=0\Leftrightarrow a=9$ $L=18a-{{a}^{2}}\Leftrightarrow L= Jawaban C Soal SIMAK UI 2018 - Matematika IPA No. 9 Diketahui $sx-y=0$ adalah garis singgung sebuah lingkaran yang titik pusatnya di kuadran ketiga dan berjarak 1 satuan ke sumbu-$x$. Jika lingkaran tersebut menyinggung sumbu-$x$ dan titik pusatnya dilalui garis $x=-2$, nilai $3s$ adalah … A. $\frac{1}{6}$ B. $\frac{4}{3}$ C. 3 D. 4 E. 6Penyelesaian Lihat/Tutup Berdasarkan informasi soal, maka dapat dibuat gambar sebagai berikut! Dari gambar diperoleh Lingkaran melalui berpusat di titik -2,-1 dan berjari-jari 1, maka persamaan lingkarannya adalah ${{x+2}^{2}}+{{y+1}^{2}}={{1}^{2}}$, $y=sx$ ${{x+2}^{2}}+{{sx+1}^{2}}=1$ $x^2+4x+4+{{s}^{2}}x^2+2sx+1=1$ ${{s}^{2}}+1x^2+2s+4x+4=0$, syarat menyinggung $D=0$, ${{b}^{2}}-4ac=0$ ${{2s+4}^{2}}-4{{s}^{2}}+14=0$ $4{{s}^{2}}+16s+16-16{{s}^{2}}-16=0$ $-12{{s}^{2}}+16s=0$ $-4s3s-4=0$ $-4s=0$ atau $3s=4$ Jawaban D Soal SIMAK UI 2018 - Matematika IPA No. 10 Jika kurva $y=a-2x^2+\sqrt{3}1-ax+a-2$ selalu berada di atas sumbu-$x$, bilangan bulat terkecil $a-2$ yang memenuhi adalah … A. 6 B. 7 C. 8 D. 9 E. 10Penyelesaian Lihat/Tutup $y=a-2x^2+\sqrt{3}1-ax+a-2$ maka $A=a-2$, $B=\sqrt{3}1-a$, $C=a-2$, Selalu berada di atas sumbu-X definit positif, maka 1 $A > 0\Leftrightarrow a-2 > 0\Leftrightarrow a>2$ 2 $D 0$, dengan rumus abc maka $a=\frac{10\pm \sqrt{48}}{2}$ $a=\frac{10\pm 4\sqrt{3}}{2}$ $a=5\pm 2\sqrt{3}$ $a 5+2\sqrt{3}$ Dari 1 dan 2 diperoleh batas nilai $a$ adalah $a > 5+2\sqrt{3}\Leftrightarrow a > 5+\sqrt{12}$ $a-2 > 5+\sqrt{12}-2$, karena diminta bilangan bulat terkecil, maka $a-2=5+\sqrt{16}-2=7$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 11 Jika $a+b-c=2$, ${{a}^{2}}+{{b}^{2}}-4{{c}^{2}}=2$, dan $ab=\frac{3}{2}{{c}^{2}}$, nilai $c$ adalah … A. 0 B. 1 C. 2 D. 3 E. 6Penyelesaian Lihat/Tutup $a+b-c=2$ $a+b=2+c$ ${{a+b}^{2}}={{2+c}^{2}}$ ${{a}^{2}}+{{b}^{2}}+2ab={{c}^{2}}+4c+4$ ${{a}^{2}}+{{b}^{2}}-4{{c}^{2}}=2$ - $2ab+4{{c}^{2}}={{c}^{2}}+4c+2$ $3{{c}^{2}}-4c+2ab-2=0$, diketahui $ab=\frac{3}{2}{{c}^{2}}$ $3{{c}^{2}}-4c+2.\frac{3}{2}{{c}^{2}}-2=0$ $6{{c}^{2}}-4c-2=0$ $3{{c}^{2}}-2c-1=0$ $3c+1c-1=0$ $c=-\frac{1}{3}$ atau $c=1$ Jawaban B Soal SIMAK UI 2018 - Matematika IPA No. 12 Jika ${{S}_{n}}$ adalah jumlah sampai suku ke-n dari barisan geometri, ${{S}_{1}}+{{S}_{6}}=1024$ dan ${{S}_{3}}\times {{S}_{4}}=1023$, maka $\frac{{{S}_{11}}}{{{S}_{8}}}$ = … A. 3 B. 16 C. 32 D. 64 E. 254Penyelesaian Lihat/Tutup Soal Keliru Gunakan petunjuk C dalam menjawab soal nomor 13 sampai nomor 15. Petunjuk C yaitu pilihlah A. Jika 1, 2, 3 benar. B. Jika 1 dan 3 benar. C. Jika 2 dan 4 benar. D. Jika hanya 4 yang benar. E. Jika semuanya benar. Soal SIMAK UI 2018 - Matematika IPA No. 13 Jika vektor $\vec{u}=2,-1,2$ dan $\vec{v}=4,10,-8$, maka … 1 $\vec{u}+k\vec{v}$ tegak lurus $\vec{u}$ bila $k=\frac{17}{18}$ 2 sudut antara $\vec{u}$ dan $\vec{v}$ adalah sudut tumpul. 3 $pro{{y}_{{\vec{u}}}}\vec{v}=6$ 4 Jarak antara $\vec{u}$ dan $\vec{v}$ sama dengan $\vec{u}+\vec{v}$Penyelesaian Lihat/Tutup Pernyataan 1 $\vec{u}+k\vec{v}$ tegak lurus $\vec{u}$, maka $\vec{u}+k\vec{v}.\vec{u}=0$ $\left \begin{matrix} 2+4k \\ -1+10k \\ 2-8k \\ \end{matrix} \right.\left \begin{matrix} 2 \\ -1 \\ 2 \\ \end{matrix} \right=0$ $4+4k+1-10k+4-16k=0$ $-22k=-9\Leftrightarrow k=\frac{9}{22}$, Pernyataan 1 SALAH Pernyataan 2 $\cos u,v=\frac{ $\cos u,v=\frac{\left \begin{matrix} 2 \\ -1 \\ 2 \\ \end{matrix} \right.\left \begin{matrix} 4 \\ 10 \\ -8 \\ \end{matrix} \right}{\sqrt{4+1+4}.\sqrt{16+100+64}}$ $\cos u,v=\frac{8-10-16}{ $\cos u,v=\frac{-18}{18\sqrt{5}}$, karena nilainya negatif maka sudut antara $\vec{u}$ dan $\vec{v}$ adalah sudut tumpul. Pernyataan 2 BENAR. Berdasarkan petunjuk C, tanpa mengecek pernyataan 4 maka opsi yang memenuhi adalah C. Jawaban C Soal SIMAK UI 2018 - Matematika IPA No. 14 Jika $y=\frac{1}{3}{{x}^{3}}-ax+b$, $a > 0$, dan $a,b\in R$, maka … 1 nilai minimum lokal $y=b-\frac{2}{3}{{a}^{\frac{3}{2}}}$ 2 nilai maksimum lokal $y=b+\frac{2}{3}{{a}^{\frac{3}{2}}}$ 3 $y$ stasioner saat $x={{a}^{\frac{1}{2}}}$ 4 naik pada interval $\left[ -\infty ,-{{a}^{\frac{1}{2}}} \right]$Penyelesaian Lihat/Tutup $y=\frac{1}{3}{{x}^{3}}-ax+b$ $\frac{dy}{dx}=x^2-a=0$, karena $a > 0$ maka $x+\sqrt{a}x-\sqrt{a}=0$ $x=-\sqrt{a}$ atau $x=\sqrt{a}$, Dari gambar garis bilangan, maka pernyataan 3 dan 4 BENAR. $y=\frac{1}{3}{{x}^{3}}-ax+b$ $x=-\sqrt{a}\Rightarrow y=b+\frac{2}{3}{{a}^{\frac{3}{2}}}$ nilai maksimum lokal, pernyataan 1 BENAR. $x=\sqrt{a}\Rightarrow y=b-\frac{2}{3}{{a}^{\frac{3}{2}}}$ nilai minimum lokal, pernyataan 2 BENAR. Jawaban E Soal SIMAK UI 2018 - Matematika IPA No. 15 Jika $\alpha =-\frac{\pi }{12}$, maka … 1 ${{\sin }^{4}}\alpha +{{\cos }^{4}}\alpha =\frac{6}{8}$ 2 ${{\sin }^{6}}\alpha +{{\cos }^{6}}\alpha =\frac{12}{16}$ 3 ${{\cos }^{4}}\alpha =\frac{1}{2}-\frac{1}{4}\sqrt{3}$ 4 ${{\sin }^{4}}\alpha =\frac{7}{16}-\frac{1}{4}\sqrt{3}$Penyelesaian Lihat/Tutup $\alpha =-\frac{\pi }{12}=-{{15}^{o}}$ $\sin {{15}^{o}}=\sin {{45}^{o}}-{{30}^{o}}$ $\sin {{15}^{o}}=\sin {{45}^{o}}\cos {{30}^{o}}-\cos {{45}^{o}}\sin {{30}^{o}}$ $\sin {{15}^{o}}=\frac{1}{2}\sqrt{2}.\frac{1}{2}\sqrt{3}-\frac{1}{2}\sqrt{2}.\frac{1}{2}$ $\sin {{15}^{o}}=\frac{\sqrt{6}-\sqrt{2}}{4}$ ${{\sin }^{2}}{{15}^{o}}={{\left \frac{\sqrt{6}-\sqrt{2}}{4} \right}^{2}}$ ${{\sin }^{2}}{{15}^{o}}=\frac{2-\sqrt{3}}{4}$ ${{\sin }^{4}}{{15}^{o}}={{\left \frac{2-\sqrt{3}}{4} \right}^{2}}=\frac{7}{16}-\frac{1}{4}\sqrt{3}$, pernyataan 4 BENAR. Dengan cara yang sama $\cos {{15}^{o}}=\frac{\sqrt{6}+\sqrt{2}}{4}$ ${{\cos }^{2}}{{15}^{o}}=\frac{2+\sqrt{3}}{4}$ ${{\cos }^{4}}{{15}^{o}}={{\left \frac{2+\sqrt{3}}{4} \right}^{2}}=\frac{7}{16}-\frac{1}{4}\sqrt{3}$, pernyataan 3 SALAH. Dengan logika, berdasarkan petunjuk C maka kita sudah dapat menentukan opsi yang memenuhi adalah D. Jawaban D Subscribe and Follow Our Channel
Buatkamu yang ingin masuk Universitas Indonesia (UI), selain melalui SNMPTN atau SBMPTN, kamu juga bisa masuk UI melalui jalur SIMAK UI. SIMAK UI adalah ujian seleksi mandiri masuk UI untuk menerima mahasiswa S1 Reguler, S1 Paralel, Vokasi serta Kelas Internasional UI. Soal-soal ini juga bisa digunakan untuk latihan persiapan tes masuk PTN
Simak-UI Seleksi Masuk UI Apa Itu SIMAK UI? Simak-UI Seleksi Masuk UI adalah ujian seleksi masuk Universitas Indonesia dan hanya diselenggarakan oleh Universitas Indonesia bagi calon mahasiswa yang ingin kuliah di Universitas Indonesia. Lokasi Ujian SIMAK UI? Perlu diketahui bahwa Ujian SIMAK UI dilakukan secara serentak di seluruh Indonesia Jakarta, Tangerang, Tangsel, Bekasi, Depok, Bogor, Bandung, Jogjakarta, Surabaya, Padang, Medan, Palembang, Makassar untuk seluruh program pendidikan yang ada di UI, mulai Program Vokasi D3, Sarjana Kelas Paralel, Profesi, Spesialis, Magister dan Doktor. Jadi, bagi calon mahasiswa yang berdomisili di Medan tidak perlu repot-repot ujian ke Jakarta. Siapa Peserta SIMAK UI? SIMAK UI diperuntukkan bagi siswa/i yang berasal SMA Sekolah Menengah Atas atau sederajat yang sudah memiliki ijasah Paket C atau mendapatkan sertifikasi A Level, IB Diploma atau sudah mendapatkan surat penyetaraan dari Departemen Pendidikan Nasional dapat mengikuti SIMAK UI tanpa harus mengikuti UN Ujian Nasional. Materi Ujian SIMAK UI? Materi Ujian SIMAK UI S1 Paralel terdiri dari Kemampuan Dasar KD Matematika Dasar, Bahasa Indonesia, dan Bahasa Inggris Kemampuan IPA KA Matematika IPA, Fisika, Kimia, Biologi Kemampuan IPS KS Ekonomi, Sejarah, Geografi, Sosiologi Pilih Prodi IPA maka materi ujiannya mencakup KD dan KA Pilih Prodi IPS maka materi ujiannya mencakup KD dan KS Pilih Prodi IPA dan IPS sekaligus IPC maka materi ujiannya mencakup KD dan KA dan KS Materi Ujian SIMAK S1 Kelas International terdiri dari Pilih Prodi IPA maka materi ujiannya mencakup Mathematics for Natural Science, Biology, Physics, Chemistry Pilih Prodi IPS maka materi ujiannya mencakup Basic Mathematics, Economy, Sociology, Geography, Indonesia and The World. Soal-Soal SIMAK UI? Berikut ini Catatan Matematika membagikan link download file-file Soal SIMAK UI secara lengkap dari tahun ke tahun. Semoga dengan mempelajari soal-soal ini kalian yang ikut seleksi ini dapat lulus/diterima menjadi mahasiswa baru Universitas Indonesia. Tahun Materi SIMAK UI Link Soal SIMAK UI 2009Kemampuan Dasar Download Kemampuan IPADownload Kemampuan IPSDownload Soal SIMAK UI 2010Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Soal SIMAK UI 2011Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Soal SIMAK UI 2012Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Kelas InternasionalDownload Soal SIMAK UI 2013Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Kelas InternasionalDownload Soal SIMAK UI 2014Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Kelas InternasionalDownload Soal SIMAK UI 2015Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Kelas InternasionalDownload Soal SIMAK UI 2016Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Kelas InternasionalDownload Soal SIMAK UI 2017Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Soal SIMAK UI 2018Kemampuan DasarDownload Kemampuan IPADownload Kemampuan IPSDownload Soal SIMAK UI 2019Kemampuan Dasar Kode 525Download Kemampuan IPA Kode 311Download Kemampuan IPA Kode 323Download Soal SIMAK UI 2020Kemampuan Dasar- Kemampuan IPA- Kemampuan IPS- Baca juga Pembahasan Matematika Dasar SIMAK UI 2018. Pembahasan Matematika IPA SIMAK UI 2018. Pembahasan Matematika Dasar SIMAK UI 2017. Pembahasan Matematika IPA SIMAK UI 2017. Pembahasan Matematika Dasar SIMAK UI 2016. Pembahasan Matematika Dasar SIMAK UI 2015. Pembahasan Matematika Dasar SIMAK UI 2014. Pembahasan Matematika Dasar SIMAK UI 2013. Pembahasan Matematika Dasar SIMAK UI 2012. Pembahasan Matematika IPA SIMAK UI 2012. Pembahasan Matematika Dasar SIMAK UI 2011. Pembahasan Matematika IPA SIMAK UI 2011. Subscribe and Follow Our Channel
. 41 491 119 133 45 43 285 126
pembahasan soal simak ui 2017 matematika ipa